

Welcome to the LCN onboarding manual

Contents:

	Coding and Software
	Code guidelines

	Data guidelines

	Code vs Data

Coding and Software

These guidelines describe general approaches to storing your scientific work, to help:

	Guarantee lab-internal transparency of ongoing projects

	Ensure code lifetime extends beyond the contracts of any single lab-member

	Facilitate reproducibility in the long run

Some of the below are lab-wide policies that should be followed. These are marked in bold below.

Code guidelines

Internal/development code

Code should be stored in a git repository on C4Science, accessible to the LCN group. Please, exclude your data files from these repositories (see Code vs Data).

	For each project that you develop code for, create a Git repository at https://c4science.ch

	Make your Git repository readable for the members of the LCN-Internals project
	Go to https://c4science.ch/diffusion/REPOSITORY_URL/manage/policies

	Edit Policies -> “Visible to” -> Costum Policy

	Make a Policy allowing members of LCN-Internals as well as “Repository Author”, see the image below.

[image: Add two policies, one for LCN-Internals, one for "Repository Author".]

Publication code

Publicly released code should be stored in a public Github repository.

	Create a personal Github account

	Push your local git repository to a GitHub repository

	Your repository will then be forked into a repository at https://github.com/EPFL-LCN

This policy is established so both you, and the lab administrators, have control over the publicly available repositories.

Code Quality

Coming soon.

Data guidelines

Storage possibilities

GIT LFS

For files <1GB, you can use Git LFS as offered by C4Science [https://c4science.ch/w/c4science/lfs].

Icfiler

For large data files, you can use shared lab storage. On all lab machines (lcncal1-5 and lcnsrv1-4), this is mounted as

/lcncluster

To access Icfiler from your own machine, you need to be connected to the EPFL network (use VPN if at home). You can then either:

	mount the following SMB share

smb://icfiler2.epfl.ch/lcncluster

	mount the drive using sshfs over one of our lab machines (here we use lcncal1)

mkdir mount_dir
sshfs gaspar_username@lcncal1:/lcncluster mount_dir

Switch drive

EPFL offers a free and swiss-hosted “dropbox” for all staff and students. Head over to Switchdrive [https://drive.switch.ch] to access it.

Code vs Data

In general, it is good practice to split your programming efforts into code and data.

Code

Programs that perform simulations, do data analysis, plot your results, and so on. Importantly, code can consume data, i.e. if your code performs analyses of data files and plots something. It also can produce data. For example, if your code simulates a neuronal system it might produce spike times. Your code can also produce derivative data (e.g. rates from spikes) if it performs analyses.

Code files have the following properties:

	Small: commonly text (non-binary) files that require a minimal amount of storage

	Dependent on interpreter: the syntax of your code will depend on whatever programming environment you write it for (e.g.: python, matlab, c, c++, perl, bash ...)

	Change often: Code will change often, e.g. as you need to implement a new functionality, fix a typo, add a comment.

	Suitable for versioned control: since the size of code files is small, incremental versions can be efficiently stored in version control systems (CVS). For example, this enables you to reproduce simulations or analyses that were produced with earlier versions of your code, even if you need to do this years later (given that you wrote down or annotated the of your code that was used).

Data

Most generally, data are numbers that are stored in files according to certain formats. Formats can range from simple storing each number in a row of a text file, to more intricate data format standards.

Common examples for data formats are: plain text, CVS, HDF5.

Data files have the following properties:

	Large: Depending on the volume of data and its format, data files tend to use more space than code.

	Independent of interpreter: data files can ideally be read from and written to by several interpreters, if general formats are used.

	Change rarely: most scientific data will usually be static, i.e. you will not change a single number here and there. If you often add measurements or simulations, this should produce additional data files.

	Not suitable for versioned control: due to the larger size of data files, they do not (or very rarely) lend themselves to versioned storage. On the bright side, data files also change rarely, and therefore do not benefit much from version control.

Index

Project

	Code of Conduct

	Development guide
	Install

	Build

	Test

	Issue tracker

	Claiming

	Code Review

	Contribution Checklist

	Standards

	Maintainers

	Authorship requirements

	Documentation

	SSI sustainability score

	Citation

	Funding

	How to resolve bikeshed issues

Communication

Venue: Where do we communicate? Is it required? Ephemeral, archived, etc.

Detail Level: How often should lab members communicate with the PI, and what
level of detail is expected in those communications? Are there guidelines for
what types of problems to immediately escalate to the PI?

Project: What standards of communication should there be for interfacing
between projects (which may have external contributors and participants) and
lab members? For instance, is it acceptable etiquette to say, “I will come by
your office and work through this with you”? Can external project participants
influence development conducted by lab members? Does all software development
need to be immediately upstreamed, or are there patterns for submitting
development?

Social Media: Do we share our work? If so, how? Any restrictions?

Infrastructure Guide

Compute Resources: Where do we run stuff?

Shared Storage: Where do we save stuff?

Version Control: Where do we develop digital artifacts?

Accounts: How are accounts managed, and for what?

Tools: What tools do we use and how do we obtain them?

Purchasing: How do we buy stuff?

Canonical Reads

	Licensing
	Jake VDP

	Hunter

	ZeroMQ

	Turk

	Other
	A Preliminary Review of Influential Works in Data-Driven Discovery
by Stalzer & Mentzel [http://arxiv.org/abs/1503.08776].

	Lab
	How to Choose a Good Scientific Problem by Uri Alon [http://www.cell.com/molecular-cell/abstract/S1097-2765(09)00641-8].

	Invisible Spotlight

	Making the Right Moves

	Open Source
	Producing OSS

Expectations

Code of Conduct: What rules are all lab members expected to follow?

Authorship: How do we confer authorship? What constitutes collaboration or
work on a paper that results in authorship?

Project Ownership: When a project is developed in the lab, how does that
project (from a social, rather than licensing/IP/technical perspective) grow or
change if the primary developer leaves the lab?

Project Leadership: When software development is funded, how is the leadership
direction established for projects developed in the lab? Is there a
consensus-based approach, is there a strategy for governance, does it include
external participants? How is leadership broken down between technical and
social?

Ethics: How do we decide what is right and wrong / who lives and who dies, and
how do we influence our decisions about projects, interactions, and scientific
actions based on these ethics? This concerns things like scooping, being
worried about scooping, actions with respect to software and data as it
concerns “competitor” groups. When developing software, how are citations to
other pieces of software handled? When writing papers, how are citations
handled?

Meta-Guidelines for Onboarding Document

	Simple: Use straightforward language and avoid jargon.

	Concise: The document should be readable in a single sitting.

	Specific: It should be targeted to the lab in question.

	Enforceable: Failure to meet expectations should have consequences.

	Living: The document is expected to change.

	Local Resources: (should this be part of a separate document?)

Mission Statement

Core Purpose: What will we accomplish?

Core Values: What would we keep doing, even if it put us at a disadvantage?

Mission: Summarize the above into what your lab does and how it does it?

 _static/comment-close.png

_static/comment-bright.png

_images/policy-choosing.png
Custom "Can View" Policy

Rules

New Rule

These rules are processed in order.

‘ Allow + ’ ‘ members of projects + ’ ‘ &5 LCN internals x Q ’ Remove

‘ Allow + ’ ‘ repository author 54 ’ Remove

If No Rules Match ‘ Deny R ’all other users.

Cancel Save Policy

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to the LCN onboarding manual

 		Coding and Software

 		Code guidelines

 		Internal/development code

 		Publication code

 		Code Quality

 		Data guidelines

 		Storage possibilities

 		Code vs Data

 		Code

 		Data

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

